

AUTHOR

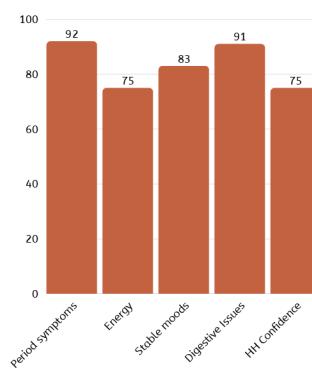
Lauren McTigue, FNT, Half of Us Collective

AFFILIATIONS

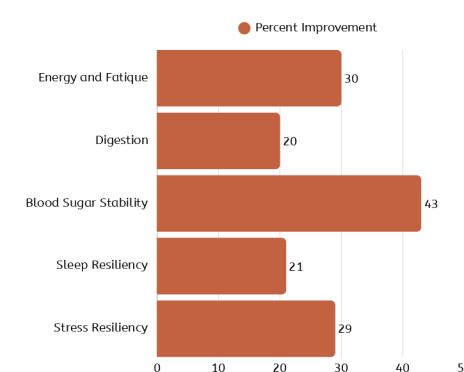
Kathryn Plummer, MD; Amanda Spaak, FNP, ACAC-NP, FMA-C;
Milli Kowalski, PhD, RN; Dr. Julie Wallace, PT, DPT, CLT, ;

INTRODUCTION

Hormonal health challenges often show up as persistent, life-disrupting symptoms such as painful or irregular cycles, fatigue, mood changes, digestive discomfort, and blood sugar instability. This study explores the impact of a defined Hormonally Supportive Meal framework—meals intentionally composed to include adequate protein, healthy fats, fiber-rich carbohydrates, and fermented foods to support blood sugar stability, gut health, nutrient absorption, and inflammatory regulation. By tracking symptoms over time, this work examines whether consistent access to these meals can meaningfully reduce symptom burden in menstruating adults through everyday food choices.


OBJECTIVE

The objective of this study was to evaluate whether consistent use of a defined Hormonally Supportive Meal framework was associated with changes in self-reported hormonal symptoms over a 12-week period. The framework emphasized meals structured around adequate protein, healthy fats, fiber-rich carbohydrates, and fermented foods to support blood sugar stability and gut health.


METHODOLOGY

- 01 Participants completed an in-depth intake survey to establish baseline hormonal symptoms across energy, mood, digestion, sleep, blood sugar, stress, and menstrual health.
- 02 Participants were introduced to the Hormonally Supportive Meal framework, outlining a consistent meal structure including protein, healthy fats, fiber-rich carbohydrates, and fermented foods.
- 03 Over a 12-week period, participants aimed to consume 10–15 hormonally supportive meals per week using provided recipes and guidelines. Meals were prepared at home, allowing the framework to be tested in realistic, everyday conditions rather than a controlled clinical setting.
- 04 Participants completed weekly symptom check-ins to track changes in energy, mood, digestion, sleep, cycle patterns, and overall well-being. This allowed for real-time monitoring of trends and patterns across multiple menstrual cycles.
- 05 At the conclusion of the study, participants completed a final symptom assessment mirroring the baseline intake. Pre- and post-study data were compared to evaluate changes in symptom burden, identify areas of greatest improvement, and assess the feasibility and accessibility of the meal framework as a supportive tool.

PARTICIPANTS REPORTING IMPROVEMENT

LEVEL OF IMPROVEMENT REPORTED

RESULTS

Over the 12-week study period, most of the 14 participants reported improvements across multiple hormonal symptom categories, including painful periods, energy, digestion, mood, sleep quality, and blood sugar stability. Although participants were encouraged to consume 10–15 hormonally supportive meals per week, the average intake was approximately 8 meals per week. Even with partial adoption of the framework, 92% of participants reported improvement in painful period symptom improvement

8 in 10 experienced more stable moods and clearer thinking

ANALYSIS

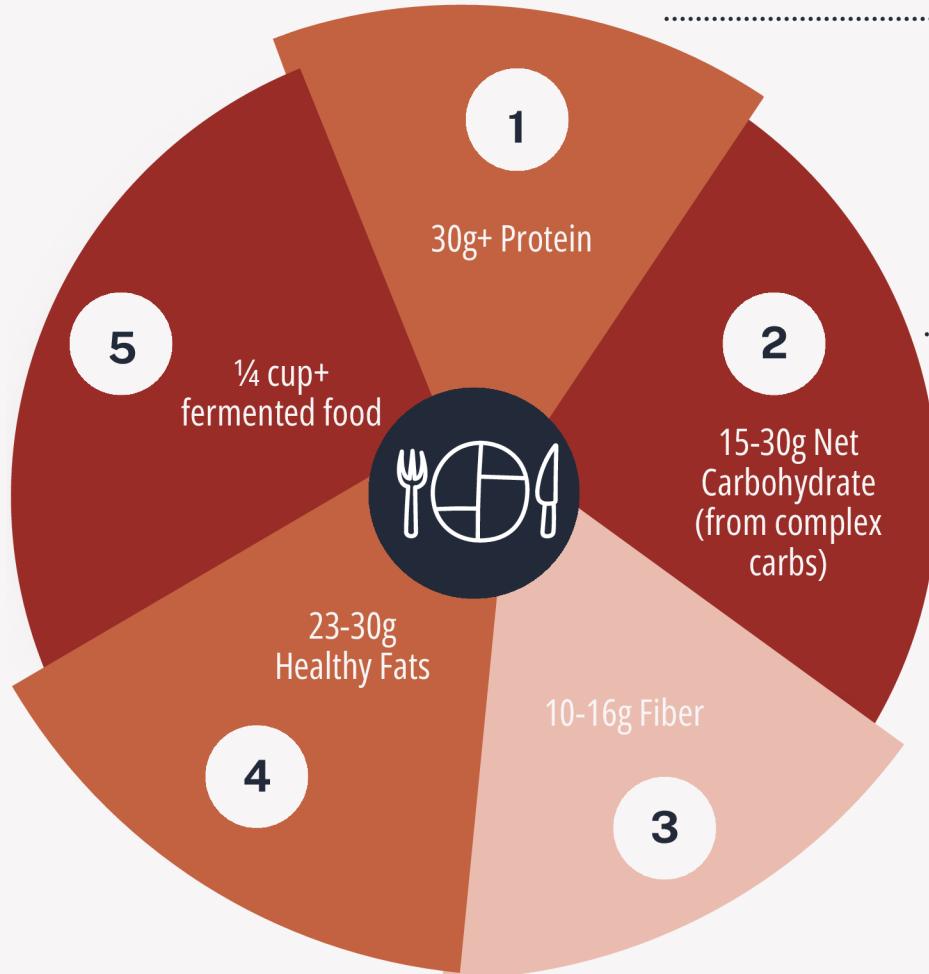
Reported improvements were observed across diverse symptom domains, suggesting that the Hormonally Supportive Meal framework may influence multiple interconnected systems, including blood sugar regulation, digestion, and stress response. The fact that improvements occurred despite lower-than-target meal adherence highlights the potential flexibility and accessibility of the framework in real-world settings. These findings support the idea that consistent meal composition, rather than perfection or strict compliance, may play a meaningful role in symptom support.

CONCLUSION

This community-based study suggests that a structured Hormonally Supportive Meal framework may offer a practical, food-based approach to supporting hormonal health in daily life. While findings are based on self-reported outcomes and a small sample size, the results indicate promising potential for symptom support even with partial implementation. Further research with larger and more diverse populations is warranted to better understand long-term impact and applicability.

Dietary Protein Intake and Hormonal & Metabolic Health in Adults (NIH – PubMed Central)

Protein Requirements Across the Female Lifespan (NIH – PubMed Central)


Protein Intake, Muscle Preservation, and Endocrine Function in Women (NIH – PubMed Central)

Prioritising Protein During Perimenopause May Help Prevent Weight Gain (University of Sydney)

KEY SOURCES

- Dietary Fats and Hormone Production: Mechanisms and Clinical Implications (Frontiers in Nutrition)
- Omega-3 Fatty Acids and Reproductive Hormone Regulation (NIH – PubMed Central)
- Fiber Intake, Gut Health, and Estrogen Metabolism (NIH – PubMed Central)
- Do We Really Need Fat for Hormone Health? (Fertility Friday – Clinical Education)

A HORMONALLY SUPPORTIVE MEAL

MEAL FRAMEWORK

- 30g+ protein
- 15-30g complex carbs
- 10-16g fiber
- 23-30 grams of healthy fats
- 1/4 cup+ fermented foods

ADDITIONAL CRITERIA IN LEVEL OF IMPORTANCE

(suggested, but not required for restaurant collaborations)

- Dairy: Only Type 2 Dairy Allowed
 - Sheep milk products
 - Goat milk products
 - Jersey cow milk products (not Holstein)
- No Refined Sugar
 - Cane sugar
 - High-fructose corn syrup
- Preparation of Legumes and Seeds
 - Soaked for at least 12 hours
 - Sprouted or pressure-cooked
- Sourcing of Meat
 - Grass-fed or pasture-raised
 - Antibiotic- and hormone-free

KEY SOURCES

- Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication: [PMC](#)
- How Sugar Affects Hormones + What to Do About It: [Activated Health & Wellness](#)
- Hormonal Imbalance Caused by Sugar (Women's Health Network): [Women's Health Network](#)
- Phytic Acid: Antinutrient Effects, Benefits, How to Reduce: [Healthline](#)
- Effect of β -Casein A2 Cow Milk Supplementation on Physical Growth, Inflammation, Growth-Related Hormones, and Nutritional Biomarkers in Stunted Children: [PMC](#)